Насыщенный и перегретый пар: давление, температура, влажность, плотность

Что такое насыщенный пар

Водяной пар, пребывающий в термодинамическом равновесии с котловой водой, является насыщенным. Это формулировка дает понимание того, что давление насыщенного пара при температуре может иметь только одно значение

Насыщенный и перегретый пар: давление, температура, влажность, плотность

В котлоагрегатах парообразование протекает при постоянном давлении и подводе тепла к котловой воде от уходящих газов. Этот процесс базируется на следующих последовательных стадиях: подпитка котла водой, подогрев ее до температуры точки насыщения, и образование сухого насыщенного пара, когда вся жидкость испаряется из него.

В паровых котлах питательная вода, пройдя через экономайзер, попадает в барабан. Из него более холодные потоки под воздействием силы тяжести опускаются по необогреваемым трубам, а поднимаются по подъёмным топочным экранам обогреваемые более горячими дымовыми газами.

Здесь начинается процесс парообразования, поскольку температура воды достигает значения точки насыщения при рабочем давлении в котлоагрегате.

Плотность пароводяной смеси в экранных пакетах уменьшается и становится ниже плотности воды в опускных трубах, что создает напор для движения пароводяной смеси по экранам в барабан, где смесь сепарируется на воду и пар.

В закрытой поверхности нагрева при не меняющейся температуре в точке насыщения устанавливается термодинамическое равновесие между котловой водой и водяным паром. Число молекул пара, выделяющихся из поверхности воды за определенное время, будет равняться числу молекул сконденсированного пара, которые перейдут обратно в воду в барабане котла.

Давление насыщения в котле зависит от температуры котловой воды в равновесном термодинамическом состоянии. При росте давления, пар сжимается и баланс нарушается. Плотность пара первоначально несколько возрастает, и из паровой среды в котловую воду будет переходить больше молекул конденсата, чем наоборот.

Насыщенный и перегретый пар: давление, температура, влажность, плотность

Поскольку количество молекул, переходящих из воды в единицу времени связано исключительно с температурой, то сжатие паровой среды не будет влиять на изменение этого числа.

Процесс будет протекать пока не возникнет термодинамическое равновесие, а следовательно, и концентрация возвращающихся молекул не достигнет первоначального уровня. Таким образом, Тнп напрямую зависит от давления насыщения в котле.

Характеристики сухого НП, приводятся в Таблице водяного пара. В ней указывают Т (С), при точке кипения котловой воды и давление (кПа и мм. рт.ст.) при которой этот процесс протекает.

Насыщенный и перегретый пар: давление, температура, влажность, плотность

Дополнительно в таблице могут указываться и другие параметры пара:

  • eдельный объем, м3/кг;
  • плотность, кг/м3;
  • удельная энтальпия, кДж/кг
  • удельная теплота парообразования, кДж/кг.

Плотность НП определяют по формуле.

D st = 216,49 * P / (Z st * (t + 273))

Где:

  • D st – плотность насыщенного пара в кг / м3;
  • P- абсолютное давление пара в барах;
  • t – температура в градусах Цельсия;
  • Z st – коэффициент сжимаемости насыщенного пара при Р и t.

В этом уравнении символ «Z st» обозначает коэффициент сжимаемости насыщенного пара при абсолютной величине давления насыщенного водяного пара P, бар. Это удобное уравнение действительно для диапазона давления пара от 0,012 до 165 бар, с соответствующим диапазоном температур насыщения от 10 до 360 С.

Когда котлоагрегат нагревает воду, пузырьки, прорывающиеся через слой воды, захватываются паром. Влажный пар определяется как пар, в котором вода присутствует в виде микрокапель паров воды. В этом случае соотношение может составлять от 0 до 1. Если пар имеет 20 % воды по объему — он считается сухим на 80% или имеет долю сухости 0,8.

Таблицы НП содержит значения, такие как температура, энтальпия и удельный объем для сухого НП, но не для влажного. Для того чтобы их определить потребуется воспользоваться формулами, учитывая соотношение двух сред:

Удельный объем (v) мокрого пара

v = X * v g + (1 – X) * v f

Где:

  • X = сухость (% / 100);
  • v f = удельный объем жидкости;
  • v g = удельный объем НП.

Удельная энтальпия пара сухостью Х:

h = h f + X * h fg

Где:

  • X = сухость (%);
  • h f = удельная энтальпия жидкости;
  • h fg = удельная энтальпия НП.

Чем влажнее пар, тем ниже значения удельного объема, теплосодержание, энтальпия и энтропия. Таким образом сухость пара оказывает существенное влияние на все эти значения.

Читайте также:  Делаем мангалы из металла своими руками: фото, размеры, чертежи

Задачей теплоэнергетиков является организация процессов парообразования в котле с сухостью 100%. Для этого в барабанах котлов устанавливают специальные сепарационные устройства, отделяющие пар от воды.

Перегретый пар

Перегретый пар — это пар с температурой, превышающей его температуру кипения при абсолютном давлении, при котором проводились измерение температуры. Давление и температура перегретого пара не зависят друг от друга, поскольку температура может увеличиваться, в то время как давление остается постоянным.

Насыщенный и перегретый пар: давление, температура, влажность, плотность

Процесс перегрева водяного пара на диаграмме Ts представлен на рисунке между состоянием E и кривой насыщенного пара. Чтобы оценить тепловую эффективность цикла, энтальпия должна быть получена из таблиц перегретого пара.

Процесс перегрева — единственный способ увеличить пиковую температуру цикла Ренкина и повысить эффективность без увеличения давления в котле. Это требует добавления в конструкцию котла особого теплообменника, называемого пароперегревателем.

В пароперегревателе дальнейший нагрев при фиксированном давлении приводит к увеличению, как температуры, так и удельного объема. Наибольшее значение перегретого пара заключается в его огромной внутренней энергии, которая может быть использована для кинетической реакции для движения лопастей турбины, создающих вращательное движение вала.

Характеристики перегретого пара (ПП) аналогичны идеальному газу, но не равны насыщенному пару. Поскольку ПП не обладает зависимостью между температурой и давлением, при конкретном давлении он может вырабатываться в широком температурном диапазоне, что будет зависеть от площади нагрева пароперегревателя.

Перегретый пар отличается от насыщенного такими преимуществами:

  • gри равном давлении насыщения он обладает намного большей температурой;
  • обладает большим удельным объемом, что дает экономию энергоресурсов при использовании;
  • при снижении он не конденсируется, пока температура не упадет ниже точки насыщения при давлении среды.

Насыщенный и перегретый пар: давление, температура, влажность, плотность

Довольно часто для технологических процессов, требуется получение перегретого пара строго определенной температуры. Для того чтобы снять ее излишки, обычно используют три метода воздействия на температуру ПП:

  • cмешивание разных температурных потоков, когда в ПП впрыскивают котловую воду или паровой теплоноситель меньшего теплосодержания;
  • поверхностное охлаждение, заключается в перенаправление ПП через систему специальных теплообменных аппаратов, выполняющих роль охладителей;
  • изменение тепловосприятия потока, реализуется через изменение температуры или расхода уходящих котловых газов.

В теплоэнергетике в котлах высокого давления наиболее часто применяют первый метод, путем впрыскивания в поток ПП питательной воды или конденсата от турбогенератора. Впрыском насыщенного пара, как правило, регулируют температуру вторичного перегрева пара.

Пароперегреватель устройство, устанавливаемый в котлоагрегате, вырабатывает перегретый пар с параметрами, превышающими температуру насыщения в барабане котла. Он относится к особо критичным котловым элементам, поскольку из-за высоких температур ПП металл конструкции функционирует в предельно-допустимых условиях.

Насыщенный и перегретый пар: давление, температура, влажность, плотность

Пароперегреватели бывают основного типа, работающие в зоне сверхкритического давления и промежуточного типа, которые направляют пар отработанный в турбине для промперегрева.

Кроме того пароперегреватели классифицируются по тепловосприятию на конвективные, установленные в конвективной части котла, радиационные — расположены около топочных экранов и ширмовые — установленные в верхней части топки. По направлению движения потоков ПП и уходящих котловых газов выпускают ПП : прямоточные, противоточные и смешанные.

В современных паровых турбинах применяют ПП с температурой перегретого пара существенно выше критической (374C).

Перегретый пар используется в турбинах для повышения теплового КПД. Другое использование перегретого пара:

  • Пищевые технологии.
  • Технологии очистки.
  • Катализ / химическая обработка.
  • Технологии поверхностной сушки.
  • Технологии отверждения.
  • Энергетика.
  • Нанотехнологии.

Теплофизические свойства водяного пара при различных температурах на линии насыщения

В таблице представлены теплофизические свойства водяного пара на линии насыщения в зависимости от температуры. Свойства пара приведены в таблице в интервале температуры от 0,01 до 370°С.

Каждой температуре соответствует давление, при котором водяной пар находится в состоянии насыщения. Например, при температуре водяного пара 200°С его давление составит величину 1,555 МПа или около 15,3 атм.

Удельная теплоемкость пара, теплопроводность и его динамическая вязкость увеличиваются по мере роста температуры. Также растет и плотность водяного пара. Водяной пар становится горячим, тяжелым и вязким, с высоким значением удельной теплоемкости, что положительно влияет на выбор пара в качестве теплоносителя в некоторых типах теплообменных аппаратов.

Читайте также:  Что такое котел утилизатор?

Например, по данным таблицы, удельная теплоемкость водяного пара Cp при температуре 20°С равна 1877 Дж/(кг·град), а при нагревании до 370°С теплоемкость пара увеличивается до значения 56520 Дж/(кг·град).

В таблице даны следующие теплофизические свойства водяного пара на линии насыщения:

  • давление пара при указанной температуре p·10-5, Па;
  • плотность пара ρ″, кг/м3;
  • удельная (массовая) энтальпия h″, кДж/кг;
  • теплота парообразования r, кДж/кг;
  • удельная теплоемкость пара Cp, кДж/(кг·град);
  • коэффициент теплопроводности λ·102, Вт/(м·град);
  • коэффициент температуропроводности a·106, м2/с;
  • вязкость динамическая μ·106, Па·с;
  • вязкость кинематическая ν·106, м2/с;
  • число Прандтля Pr.

Теплофизические свойства водяного пара: теплоемкость, плотность , вязкость и другие - таблица

Удельная теплота парообразования, энтальпия, коэффициент температуропроводности и кинематическая вязкость водяного пара при увеличении температуры снижаются. Динамическая вязкость и число Прандтля пара при этом увеличиваются.

Будьте внимательны! Теплопроводность в таблице указана в степени 102. Не забудьте разделить на 100! Например, теплопроводность пара при температуре 100°С равна 0,02372 Вт/(м·град).

Насыщенный водяной пар

Вернемся к эксперименту. Итак, у нас в закрытой банке жидкость. Что происходит? Испарение воды. Процесс начинается при низкой плотности воздуха. Благодаря пару, давление на поверхность жидкости возрастает, оно препятствует движению молекул. Их все меньше и меньше отрывается от воды. Наступает момент, когда образуются капли влаги. Этот процесс называется «конденсация». Когда скорость образования пара равна скорости конденсации, возникает термодинамическое равновесие. Пар в этот момент считается насыщенным. Жидкость и газ уравновешивают друг друга. Такое состояние достигается при определенных условиях, важные параметры:

  1. Температура, изменение на долю градуса нарушает равновесие. При повышении парообразование ускоряется, при понижении увеличивается процесс конденсации влаги.
  2. Давление, при его понижении молекулы жидкой фазы свободнее передвигаются, отрываются от поверхности, начинается испарение воды.

Насыщенный и перегретый пар: давление, температура, влажность, плотность

Почему не учитывается объем банки? Он не меняет термодинамических свойств воды и водяного пара в состоянии насыщения. Допустим, крышка экспериментальной банки опустилась ниже, объем уменьшился. К чему это приведет? Пар будет ускоренно конденсироваться до момента равновесия. При увеличении объема ускорится парообразование, но замкнутая система опять придет в равновесное состояние.

Изучая термодинамику, легко понять, почему пар обжигает сильнее воды той же температуры. Что такое кипение? Состояние, при котором жидкая фаза активно превращается в парообразное состояние. Следовательно, происходит обратный процесс конденсации, он сопровождается выделением теплоты. За счет этого ожог от пара сильнее.

Насыщенный и перегретый пар: давление, температура, влажность, плотность

Удельная теплоемкость возрастает, если повышается температура воды. Процесс парообразования виден в момент кипения. При повышении давления температура газов достигает 200°С, это свойство используется в теплотехнике, горячим, вязким паром заполняют теплообменники.

Формула p=nkT указывает на прямую зависимость давления идеального газа (p) и его температуры (Т). Параметр n –число молекул, содержащихся в заданном объеме, характеризует плотность пара. Постоянная Больцмана k устанавливает взаимосвязь температуры с энергией образования вещества (энтальпия).

Пар нельзя сравнивать с идеальным газом. Его давление при повышении температуры растет быстрее из-за повышения плотности. Концентрация частиц в неизменном объеме возрастает. Эти особенности свойств водяного пара необходимо учитывать при расчетах давления насыщенного водяного пара. Если в идеальном газе возрастает энергия ударов молекул о стенки сосуда, то в насыщенном паре существенно возрастает число ударов за счет увеличения концентрации активных частиц.

Насыщенный и перегретый пар: давление, температура, влажность, плотность

Плотностью называется отношение массы вещества к его объему. Этот параметр характеризует расстояние между отдельными молекулами. В жидкой фазе они сцепляются между собой, в твердой расположены симметрично относительно друг друга. В газообразном находятся на произвольном удаленном расстоянии, чем объясняется отличие плотности водяного пара от плотности воды.

Теперь подробно рассмотрим, какое влияние оказывает на плотность насыщенных водяных паров изменение температуры. Она непостоянна из-за изменения массы газообразной фазы:

  • при повышении температуры она возрастает за счет ускорения испарения;
  • при понижении – падает, вода активно конденсируется.
Читайте также:  Биокамин своими руками, пошаговая инструкция изготовления

Теплопроводность водяного пара при высоких температурах

В таблице приведены значения теплопроводности диссоциированного водяного пара в размерности Вт/(м·град) при температурах от 1400 до 6000 K и давлении от 0,1 до 100 атм.

По данным таблицы, теплопроводность водяного пара при высоких температурах заметно увеличивается в области 3000…5000 К. При высоких значениях давления максимум коэффициента теплопроводности достигается при более высоких температурах.

Теплопроводность водяного пара при высоких температурах - таблица

Будьте внимательны! Теплопроводность в таблице указана в степени 103. Не забудьте разделить на 1000!

Пример расчетов для теплообмена между холодным и горячим телом

К горячей воде, массой 200 грамм, имеющей температуру +80 градусов Цельсия, добавили холодную воду, в количестве 100 грамм при температуре +15 градусов Цельсия. Какую температуру будет иметь смесь после установления теплового равновесия? Считать, что окружающая среда в теплообмене не участвует.

Примечание: Здесь мы рассматриваем упрощенную задачу, для того, чтобы облегчить понимание закона сохранения энергии. Мы не учитываем в этой задаче, что вода содержится в емкости. И часть тепловой энергии будет затрачиваться на то, чтобы изменить температуру емкости.

При решении других задач обязательно учитывайте, что емкость, в которой будет содержаться вещество, имеет массу. И часть тепловой энергии будет затрачиваться на то, чтобы изменить температуру емкости.

 Решение:

В условии сказано, что окружающая среда в теплообмене не участвует. Поэтому, будем считать рассматриваемую систему замкнутой. А в замкнутых системах выполняются законы сохранения. Например, закон сохранения энергии.

Иными словами, с сосудом и окружающим воздухом теплообмен не происходит и, все тепловая энергия, отданная горячей водой, будет получена холодной водой.

1). Запишем уравнение теплового баланса, в правой части которого можно записать ноль:

[large Q_{text{остывания горяч}} + Q_{text{нагревания холод}} = 0 ]

2). Теперь запишем формулу для каждого количества теплоты:

[large Q_{text{остывания горяч}} = c_{text{воды}} cdot m_{text{горяч}} cdot (t_{text{общ}} — t_{text{горяч}} ) ]

[large Q_{text{нагревания холодн}} = c_{text{воды}} cdot m_{text{холодн}} cdot (t_{text{общ}} — t_{text{холодн}} ) ]

Примечания:

  1. (large c_{text{воды}} ) – удельную теплоемкость воды находим в справочнике;
  2. Массу воды переводим в килограммы;
  3. Горячая вода остывает и отдает тепловую энергию. Поэтому, разность (large (t_{text{общ}} — t_{text{горяч}} ) ) будет иметь знак «минус», потому, что конечная температура горячей воды меньше ее начальной температуры;
  4. Холодная вода получает тепловую энергию и нагревается. Из-за этого, разность (large (t_{text{общ}} — t_{text{холодн}} ) ) будет иметь знак «плюс», потому, что конечная температура холодной воды больше ее начальной температуры;

3). Подставим выражения для каждого Q в уравнение баланса:

[large c_{text{воды}} cdot m_{text{горяч}} cdot (t_{text{общ}} — t_{text{горяч}} ) + c_{text{воды}} cdot m_{text{холодн}} cdot (t_{text{общ}} — t_{text{холодн}} ) = 0 ]

4). Для удобства, заменим символы числами:

[large 4200 cdot 0,2 cdot (t_{text{общ}} — 80 ) + 4200 cdot 0,1 cdot (t_{text{общ}} — 15 ) = 0 ]

Проведем упрощение:

[large 840 cdot (t_{text{общ}} — 80 ) + 420 cdot (t_{text{общ}} — 15 ) = 0 ]

Раскрыв скобки и решив это уравнение, получим ответ:

[large t_{text{общ}} = 58,33 ]

Ответ: Температура смеси после прекращения теплообмена будет равна 58,33 градуса Цельсия.

Выводы

  1. Если тела имеют различную температуру, то между ними возможен обмен тепловой энергией, т. е. теплообмен;
  2. Когда тела будут иметь равную температуру, теплообмен прекратится;
  3. Тело с высокой температурой, отдает тепловую энергию (теплоту) и остывает. Отданное количество теплоты Q имеет знак «минус»;
  4. А тело с низкой температурой получает тепловую энергию и нагревается. Полученное количество теплоты Q имеет знак «плюс»;
  5. Количество теплоты, отданное горячим телом равно количеству теплоты, полученному холодным телом. Это – закон сохранения тепловой энергии;
  6. Сохранение тепловой энергии можно записать в виде уравнения теплового баланса;
  7. В левой части уравнения складываем количества теплоты (всех тел, участвующих в теплообмене);
  8. В правой части уравнения записываем ноль, когда теплообмен с окружающей средой отсутствует.

Источники:

  • https://kotle.ru/sovety/nasyshhennyj-i-peregretyj-par
  • http://thermalinfo.ru/svojstva-gazov/neorganicheskie-gazy/teplofizicheskie-svojstva-teploprovodnost-vodyanogo-para-na-linii-nasyshheniya
  • https://VodaVoMne.ru/svojstva-vody/svojstva-vodyanogo-para
  • https://formulki.ru/molekulyarka/teplovoe-ravnovesie-i-uravnenie-teplovogo-balansa
Понравилась статья? Поделиться с друзьями:
Котлы и отопление