Молекулярная физика

Фазовые переходы: изменение агрегатных состояний вещества

Прежде чем говорить о насыщенном паре, нужно освежить знания об агрегатных состояниях и фазовых переходах между ними. Если вы забыли, какие бывают агрегатные состояния, то можете сбегать в нашу статью про них.

При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы — изменения агрегатных состояний вещества.

Вот какие бывают фазовые переходы:

  1. Переход из твердого состояния в жидкое — плавление;

  2. Переход из жидкого состояния в твердое — кристаллизация;

  3. Переход из газообразного состояния в жидкое — конденсация;

  4. Переход из жидкого состояния в газообразное — парообразование;

  5. Переход из твердого состояния в газообразное, минуя жидкое — сублимация;

  6. Переход из газообразного состояния в твердое, минуя жидкое — десублимация.

Фазовые переходы — важная штука. Все живое не Земле существует лишь благодаря тому, что вода умеет превращаться в лед или пар. С кристаллизацией, плавлением, парообразованием и конденсацией связаны многие процессы в металлургии и микроэлектронике.

Что такое насыщенный пар

Водяной пар, пребывающий в термодинамическом равновесии с котловой водой, является насыщенным. Это формулировка дает понимание того, что давление насыщенного пара при температуре может иметь только одно значение

Молекулярная физика

В котлоагрегатах парообразование протекает при постоянном давлении и подводе тепла к котловой воде от уходящих газов. Этот процесс базируется на следующих последовательных стадиях: подпитка котла водой, подогрев ее до температуры точки насыщения, и образование сухого насыщенного пара, когда вся жидкость испаряется из него.

В паровых котлах питательная вода, пройдя через экономайзер, попадает в барабан. Из него более холодные потоки под воздействием силы тяжести опускаются по необогреваемым трубам, а поднимаются по подъёмным топочным экранам обогреваемые более горячими дымовыми газами.

Здесь начинается процесс парообразования, поскольку температура воды достигает значения точки насыщения при рабочем давлении в котлоагрегате.

Плотность пароводяной смеси в экранных пакетах уменьшается и становится ниже плотности воды в опускных трубах, что создает напор для движения пароводяной смеси по экранам в барабан, где смесь сепарируется на воду и пар.

В закрытой поверхности нагрева при не меняющейся температуре в точке насыщения устанавливается термодинамическое равновесие между котловой водой и водяным паром. Число молекул пара, выделяющихся из поверхности воды за определенное время, будет равняться числу молекул сконденсированного пара, которые перейдут обратно в воду в барабане котла.

Давление насыщения в котле зависит от температуры котловой воды в равновесном термодинамическом состоянии. При росте давления, пар сжимается и баланс нарушается. Плотность пара первоначально несколько возрастает, и из паровой среды в котловую воду будет переходить больше молекул конденсата, чем наоборот.

Молекулярная физика

Поскольку количество молекул, переходящих из воды в единицу времени связано исключительно с температурой, то сжатие паровой среды не будет влиять на изменение этого числа.

Процесс будет протекать пока не возникнет термодинамическое равновесие, а следовательно, и концентрация возвращающихся молекул не достигнет первоначального уровня. Таким образом, Тнп напрямую зависит от давления насыщения в котле.

Характеристики сухого НП, приводятся в Таблице водяного пара. В ней указывают Т (С), при точке кипения котловой воды и давление (кПа и мм. рт.ст.) при которой этот процесс протекает.

Молекулярная физика

Дополнительно в таблице могут указываться и другие параметры пара:

  • eдельный объем, м3/кг;
  • плотность, кг/м3;
  • удельная энтальпия, кДж/кг
  • удельная теплота парообразования, кДж/кг.

Плотность НП определяют по формуле.

D st = 216,49 * P / (Z st * (t + 273))

Где:

  • D st – плотность насыщенного пара в кг / м3;
  • P- абсолютное давление пара в барах;
  • t – температура в градусах Цельсия;
  • Z st – коэффициент сжимаемости насыщенного пара при Р и t.

В этом уравнении символ «Z st» обозначает коэффициент сжимаемости насыщенного пара при абсолютной величине давления насыщенного водяного пара P, бар. Это удобное уравнение действительно для диапазона давления пара от 0,012 до 165 бар, с соответствующим диапазоном температур насыщения от 10 до 360 С.

Когда котлоагрегат нагревает воду, пузырьки, прорывающиеся через слой воды, захватываются паром. Влажный пар определяется как пар, в котором вода присутствует в виде микрокапель паров воды. В этом случае соотношение может составлять от 0 до 1. Если пар имеет 20 % воды по объему — он считается сухим на 80% или имеет долю сухости 0,8.

Читайте также:  Газовые обогреватели – виды, характеристики, особенности

Таблицы НП содержит значения, такие как температура, энтальпия и удельный объем для сухого НП, но не для влажного. Для того чтобы их определить потребуется воспользоваться формулами, учитывая соотношение двух сред:

Удельный объем (v) мокрого пара

v = X * v g + (1 – X) * v f

Где:

  • X = сухость (% / 100);
  • v f = удельный объем жидкости;
  • v g = удельный объем НП.

Удельная энтальпия пара сухостью Х:

h = h f + X * h fg

Где:

  • X = сухость (%);
  • h f = удельная энтальпия жидкости;
  • h fg = удельная энтальпия НП.

Чем влажнее пар, тем ниже значения удельного объема, теплосодержание, энтальпия и энтропия. Таким образом сухость пара оказывает существенное влияние на все эти значения.

Задачей теплоэнергетиков является организация процессов парообразования в котле с сухостью 100%. Для этого в барабанах котлов устанавливают специальные сепарационные устройства, отделяющие пар от воды.

Удельная теплота парообразования

Наблюдения показывают, что для перевода жидкости в пар при постоянной температуре необходимо передать ей количество теплоты Q, пропорциональное массе m жидкости, превратившейся в пар, что можно записать в виде формулы:

$ Q = r * m $ (1),

где: коэффициент пропорциональности r — удельная теплота парообразования, (Дж/кг). Удельная теплота парообразования указывает, какое количество теплоты требуется для превращения 1 кг жидкости в пар при постоянной температуре. Экспериментальные значения удельной теплоты парообразования для разных веществ приведены в справочных таблицах.

Таблицы насыщенного водяного пара

Таблицы насыщенного водяного пара — необходимый инструмент для любого инженера, работающего с паром. Обычно их используют для определения зависимости температуры насыщенного пара от парового давления или, наоборот, давления от температуры насыщенного пара. Кроме этих параметров, таблицы обычно включают и другие показатели, такие как удельная энтальпия (h) и удельный объём (v).

Данные таблиц насыщенного водяного пара всегда отображают информацию о конкретной точке насыщения известной как точка кипения. Это точка, в которой вода (жидкость) и пар (газ) могут сосуществовать при одинаковых температуре и давлении. Так как H2O может быть и в жидком, и в газообразном состоянии, нам будут необходимы две подборки данных: данные о насыщенной воде (жидкости), которые обычно обозначаются подстрочной буквой f, и данные о насыщенном паре (газе), которые обозначают подстрочной буквой g.

Таблица насыщенного водяного пара, основанная на давлении

Давл. (изб.)Темп. Удельный объёмУдельная энтальпиякПа изб.°Cм3/кгкДж/кгPTVfVgHfHfgHg
99.97 0.0010434 1.673 419.0 2257 2676
20 105.10 0.0010475 1.414 440.6 2243 2684
50 111.61 0.0010529 1.150 468.2 2225 2694
100 120.42 0.0010607 0.8803 505.6 2201 2707


Таблица насыщенного водяного пара, основанная на температуре

Темп. Давл. (изб.)Удельный объёмУдельная энтальпия°CкПа изб.м3/кгкДж/кгTPVfVgHfHfgHg
100 0.093 0.0010435 1.672 419.1 2256 2676
110 42.051 0.0010516 1.209 461.4 2230 2691
120 97.340 0.0010603 0.8913 503.8 2202 2706
130 168.93 0.0010697 0.6681 546.4 2174 2720
140 260.18 0.0010798 0.5085 589.2 2144 2733
150 374.78 0.0010905 0.39250 632.3 2114 2746


Процесс образования пара

Температура вещества определяется средней кинетической энергией молекул. Но при любой температуре находятся “быстрые” молекулы, имеющие скорости (и кинетическую энергию) на много больше средней. Это позволяет им преодолеть силу притяжения соседних молекул и “вырваться наружу”, то есть превратиться в пар и перейти в газообразное состояние. Доля таких молекул от общего их количества определяется распределением Максвелла.

Молекулярная физика

Распределения Максвелла для скоростей и кинетических энергий молекул идеального газа.

Часть быстрых молекул пара, сталкиваясь с другими молекулами и стенками сосуда, теряет скорость, “охлаждается”, и возвращается обратно в жидкость. Обратный процесс перехода из парообразного состояния в жидкое называется конденсацией.

Эксперименты показывают, что для превращения жидкости в пар при постоянной температуре необходимо передать ей количество теплоты Q, пропорциональное массе m жидкости, превратившейся в пар:

$ Q = r * m $ (1),

где: коэффициент пропорциональности r — удельная теплота парообразования, (Дж/кг). Удельная теплота парообразования указывает, какое количество теплоты требуется для превращения 1 кг жидкости в пар при постоянной температуре.

Понятие кипения

В некоторых случаях испарение жидкости происходит не только с ее поверхности, а также со всего объема. Кипение является ответом на происходящий процесс. С повышением температуры на водной поверхности появляются пузырьки. За небольшой промежуток времени внутри пузырьков происходит испарение жидкости. Одновременно повышается давление. Расширяясь, они поднимаются на поверхность, где сразу же лопаются.

Читайте также:  Советы по утеплению лоджии изнутри своими руками: пошаговая инструкция

Температура кипения жидкости в естественных условиях при 100000 Па составляет 100 градусов. Она изменяется в зависимости от давления. На высоте в горах вода закипает при более низкой температуре. Если же сосуд закрыт герметично, то закипания вообще не происходит.

Испарение и конденсация

Молекулы в жидкости непрерывно и хаотично движутся. Это значит, что направление движения отдельно взятых молекул — это случайные направления. При этом жидкость сохраняет свой объем. Также молекулы силами притяжения притягиваются друг к другу, из-за чего не могут покинуть Омск жидкость.

Значения скоростей молекул случайны. Из-за этого среди всех молекул обязательно есть те, что движутся очень быстро. Если такая молекула окажется вблизи поверхности раздела жидкости и окружающей среды, то ее кинетическая энергия может достигнуть большого значения, и молекула покинет жидкость.

Собственно, именно так происходит процесс испарения (мы говорили о нем выше, когда речь шла о фазовых переходах). Когда испарившихся молекул становится много, образуется пар.

Обратный процесс тоже возможен: вырвавшиеся за пределы жидкости молекулы вернутся в жидкость. Это конденсация, о ней мы тоже говорили.
Если открыть сосуд с жидкостью, то испарившиеся молекулы будут покидать пространство над жидкостью и не возвращаться обратно. Количество жидкости таким образом будет уменьшаться. То есть жидкость испаряется, а пар обратно не конденсируется (потому что молекулы этого пара удаляются от жидкости) — так происходит высыхание.

Испарение может происходить с разной скоростью. Чем больше силы притяжения молекул друг к другу, тем меньшее число молекул в единицу времени окажется в состоянии преодолеть эти силы притяжения и вылететь наружу, и тем меньше скорость испарения.

Быстро испаряются такие жидкости, как эфир, ацетон, спирт. Из-за этого свойства их иногда называют летучими жидкостями. Медленнее — вода. Намного медленнее воды испаряются масло и ртуть.

Свойства насыщенного пара

Насыщенный пар обладает определенными свойствами. Среди них отмечаются:

Какой пар называется насыщенным

  1. Его плотность при постоянной температуре не зависит от объема. Если уменьшить объем сосуда, с присутствующим там газообразным веществом, то молекулы начнут переходить в водную среду. Так будет происходить до того времени, пока не наступит динамическое равновесие. Этот процесс не зависит от объема, а плотность газообразной среды останется прежней.
  2. Величина давления не связана с объемом. При уменьшении давления некоторое количество молекул перейдут в газообразную среду и равновесие восстановится.
  3. С повышением или понижением температуры при одинаковом объеме соответственно изменяется плотность. С увеличением градусов начинается процесс испарения, а с уменьшением происходит конденсация. Наблюдается это до тех пор, пока в обоих случаях не наступит динамическое равновесие.
  4. При повышении температуры давление возрастает быстрее, чем по линейному закону.

Исследуя свойство насыщенного пара видно, что у него происходит постоянный контакт с жидкостью. Благодаря этому молекулы мигрируют в каждую среду по мере изменения внешних факторов.

Основные отличия

Изучая свойства насыщенного и ненасыщенного пара, можно найти несколько отличий. Среди них выделяются:

Какой пар называется ненасыщенным

  1. Для насыщенного газообразного вещества важными параметрами являются плотность и давление. Для ненасыщенного эти факторы не имеют большого значения.
  2. Для ненасыщенного пара при одинаковой температуре изменение объема влечет за собой увеличение или уменьшение давления. Для насыщенного вещества эти 2 фактора не оказывают совместного влияния. Они работают независимо.
  3. Для ненасыщенного пара нет зависимости плотности от температуры.
  4. При увеличении температуры у ненасыщенного газообразного вещества в линейной зависимости поднимается давление. У насыщенного — по экспоненциальной кривой графика.

Процессы испарения и конденсации постоянно наблюдаются в окружающей человека жизни. Примером могут служить высыхающие после дождя лужи или скопление конденсата на запотевших стеклах домов. Вооружившись этими знаниями, есть возможность улучшить климат в квартире. В зависимости от необходимости изменения условий можно поставить в ней увлажнитель воздуха или камин с обдувом.

Преимущества в сфере отопления

Насыщенным называется чистый пар в непосредственном контакте с жидкой водой. Он обладает многими характеристиками, которые делают его отличным источником тепловой энергии, особенно это касается высоких температур (выше 100 °C). Некоторые из них:

  1. Быстрый равномерный нагрев с помощью скрытой передачи тепла повышает качество продукции и производительность.
  2. Давление и температуру можно контролировать и устанавливать на необходимом уровне.
  3. Высокий коэффициент теплопередачи.
  4. Берет свое начало из воды, безопасный, чистый и недорогой.насыщенный пар

Сухой и насыщенный: в чем противоречие

Многие путаются с терминами “сухой” и “насыщенный”. Как может быть нечто одновременно и тем и другим? Ответ кроется в терминологии, которую мы используем. Термин «сухой» связывают с отсутствием влаги, то есть «не мокрый». «Насыщенный» означает “замоченный”, “промокший”, “затопленный”, “заваленный” и так далее. Все это, казалось бы, подтверждает противоречие. Однако в паровой инженерии термин «насыщенный» имеет другое значение и в данном контексте означает состояние, при котором происходит кипение. Таким образом, температура, при которой происходит кипение, известна технически как температуры насыщения. Сухой пар в данном контексте не имеет в себе влаги. Если понаблюдать за кипящим чайником, то можно увидеть выходящее из носика чайника белое испарение. На самом деле, это смесь сухого бесцветного пара и влажного пара, содержащего в себе капельки воды, которые отражают свет и окрашиваются в белый цвет. Поэтому термин «сухой насыщенный пар» означает, что пар обезвожен и не перегрет. Свободное от частиц жидкости, это вещество в газообразном состоянии, которое не следуют общим газовым законам.

Читайте также:  Давление в системе отопления частного дома и многокварирной многоэтажке

Перегретый пар

Перегретый пар — это пар с температурой, превышающей его температуру кипения при абсолютном давлении, при котором проводились измерение температуры. Давление и температура перегретого пара не зависят друг от друга, поскольку температура может увеличиваться, в то время как давление остается постоянным.

Молекулярная физика

Процесс перегрева водяного пара на диаграмме Ts представлен на рисунке между состоянием E и кривой насыщенного пара. Чтобы оценить тепловую эффективность цикла, энтальпия должна быть получена из таблиц перегретого пара.

Процесс перегрева — единственный способ увеличить пиковую температуру цикла Ренкина и повысить эффективность без увеличения давления в котле. Это требует добавления в конструкцию котла особого теплообменника, называемого пароперегревателем.

В пароперегревателе дальнейший нагрев при фиксированном давлении приводит к увеличению, как температуры, так и удельного объема. Наибольшее значение перегретого пара заключается в его огромной внутренней энергии, которая может быть использована для кинетической реакции для движения лопастей турбины, создающих вращательное движение вала.

Температура перегретого пара

Характеристики перегретого пара (ПП) аналогичны идеальному газу, но не равны насыщенному пару. Поскольку ПП не обладает зависимостью между температурой и давлением, при конкретном давлении он может вырабатываться в широком температурном диапазоне, что будет зависеть от площади нагрева пароперегревателя.

Перегретый пар отличается от насыщенного такими преимуществами:

  • gри равном давлении насыщения он обладает намного большей температурой;
  • обладает большим удельным объемом, что дает экономию энергоресурсов при использовании;
  • при снижении он не конденсируется, пока температура не упадет ниже точки насыщения при давлении среды.

Методы регулирования температуры перегретого пара

Молекулярная физика

Довольно часто для технологических процессов, требуется получение перегретого пара строго определенной температуры. Для того чтобы снять ее излишки, обычно используют три метода воздействия на температуру ПП:

  • cмешивание разных температурных потоков, когда в ПП впрыскивают котловую воду или паровой теплоноситель меньшего теплосодержания;
  • поверхностное охлаждение, заключается в перенаправление ПП через систему специальных теплообменных аппаратов, выполняющих роль охладителей;
  • изменение тепловосприятия потока, реализуется через изменение температуры или расхода уходящих котловых газов.

В теплоэнергетике в котлах высокого давления наиболее часто применяют первый метод, путем впрыскивания в поток ПП питательной воды или конденсата от турбогенератора. Впрыском насыщенного пара, как правило, регулируют температуру вторичного перегрева пара.

Использование перегретого пара в технике

В современных паровых турбинах применяют ПП с температурой перегретого пара существенно выше критической (374C).

Перегретый пар используется в турбинах для повышения теплового КПД. Другое использование перегретого пара:

  • Пищевые технологии.
  • Технологии очистки.
  • Катализ / химическая обработка.
  • Технологии поверхностной сушки.
  • Технологии отверждения.
  • Энергетика.
  • Нанотехнологии.

Источники:

  • https://skysmart.ru/articles/physics/nasyshennyj-i-nenasyshennyj-par
  • https://kotle.ru/sovety/nasyshhennyj-i-peregretyj-par
  • https://obrazovaka.ru/fizika/davlenie-nasyschennogo-para-zavisimost-ot-temperatury-v-tablice.html
  • https://www.tlv.com/global/RU/steam-theory/how-to-read-a-steam-table.html
  • https://obrazovaka.ru/fizika/nasyschennye-i-nenasyschennye-pary-chem-otlichayutsya.html
  • https://na5.club/fizika/chem-otlichayutsya-nasyshhennye-i-nenasyshhennye-pary.html
  • https://www.syl.ru/article/239058/mod_nasyischennyiy-par-i-ego-svoystva
Понравилась статья? Поделиться с друзьями:
Котлы и отопление